Osmoregulation in Drosophila melanogaster selected for urea tolerance.

Abstract

Animals may adapt to hyperosmolar environments by either osmoregulating or osmoconforming. Osmoconforming animals generally accumulate organic osmolytes including sugars, amino acids or, in a few cases, urea. In the latter case, they also accumulate 'urea-counteracting' solutes to mitigate the toxic effects of urea. We examined the osmoregulatory adaptation of Drosophila melanogaster larvae selected to live in 300 mmol l(-)(1) urea. Larvae are strong osmoregulators in environments with high NaCl or sucrose levels, but have increased hemolymph osmolarity on urea food. The increase in osmolarity on urea food is smaller in the selected larvae relative to unselected control larvae, and their respective hemolymph urea concentrations can account for the observed increases in total osmolarity. No other hemolymph components appear to act as urea-counteractants. Urea is calculated to be in equilibrium across body compartments in both selected and control larvae, indicating that the selected larvae are not sequestering it to lower their hemolymph osmolarity. The major physiological adaptation to urea does not appear to involve increased tolerance or improved osmoregulation per se, but rather mechanisms (e.g. metabolism, decreased uptake or increased excretion) that reduce overall urea levels and the consequent toxicity.

Topics

2 Figures and Tables

Download Full PDF Version (Non-Commercial Use)